Compare commits

..

No commits in common. "a0ef3f08180d3dcbaf3846265c32cfc7cb1789c5" and "bf5842d489791c1ceb591ee38bda3eef77fa4078" have entirely different histories.

2 changed files with 111 additions and 208 deletions

163
oop.py
View File

@ -1,26 +1,25 @@
import copy
import heapq
import re
import sys
import time
from math import isinf,inf
import matplotlib.patches
import networkx as nx
import matplotlib.pyplot as plt
from typing import Dict, Generator, List, Optional
from typing import Dict, Generator, List, Optional, cast
import random
import os
def main():
# print("Welcome to Lab1")
print("功能5中输入@停止功能")
tu = None
while True:
i = input("请输入操作q:退出, 0:读入文件, 1:展示图形, 2:查找桥接词, 3:生成新文本, 4:计算最短路径, 5:随机游走):")
if i == "q" :
sys.exit()
if i == "0":
exit(0)
if i == "0": #shengchengTu
tu=Tu()
file_name=input("请输入文件名称:")
@ -56,15 +55,15 @@ def main():
print("Invalid input")
class Tu :
def __init__(self):
self.dict={}
self.graph=nx.MultiDiGraph()
@staticmethod
def read_text_file(filename):
def read_text_file(self,filename):
try:
with open(filename, 'r', encoding="utf-8") as file:
with open(filename, 'r') as file:
text = file.read()
# 用正则表达式将非字母字符替换为空格,并将换行符也替换为空格
text = re.sub(r'[^a-zA-Z\n]+', ' ', text)
@ -77,7 +76,7 @@ class Tu:
return []
def generate_directed_dict(self,word_sequence):
graph = self.dict
graph = self.dict #chunfuzhi,yiqigai
for i in range(len(word_sequence) - 1):
current_word = word_sequence[i]
next_word = word_sequence[i + 1]
@ -110,10 +109,9 @@ class Tu:
def draw_directed_graph(self):
G=self.graph
pos = nx.spring_layout(G)
plt.rcParams['figure.figsize'] = (12.8, 7.2)
nx.draw_networkx(G, pos, with_labels=True, node_size=1000,
node_color="skyblue", edge_color="black", font_size=10,
font_weight="bold", arrows=True, connectionstyle='arc3,rad=0.2')
nx.draw_networkx(G, pos, with_labels=True, node_size=1000, node_color="skyblue",edge_color="black", font_size=10, font_weight="bold",
arrows=True, connectionstyle='arc3,rad=0.2')
edge_labels = nx.get_edge_attributes(G, 'weight')
# 调整箭头位置
for edge, weight in edge_labels.items():
@ -121,11 +119,9 @@ class Tu:
dx = pos[edge[0]][0] - pos[edge[1]][0]
dy = pos[edge[0]][1] - pos[edge[1]][1]
plt.annotate(weight, (
(pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1,
(pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1))
(pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1, (pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1))
else: # 反向边不存在
plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2,
(pos[edge[0]][1] + pos[edge[1]][1]) / 2))
plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2, (pos[edge[0]][1] + pos[edge[1]][1]) / 2))
plt.show()
def drawDirectedGraph(self):
@ -138,15 +134,27 @@ class Tu:
print("No", word1, "or", word2, "in the graph!")
return []
bridge_words = [
word for word in graph[word1]
if word2 in graph.get(word, {})
]
bridge_words = []
bridge_words_origin = []
for bridge_word in graph:
if word1 == bridge_word:
bridge_words = list(graph[bridge_word].keys())
bridge_words_origin = copy.deepcopy(bridge_words)
for wordi in bridge_words_origin:
if graph.get(wordi) != None:
if word2 not in graph[wordi].keys():
bridge_words.remove(wordi)
else:
bridge_words.remove(wordi)
return bridge_words
@staticmethod
def print_bridge_words(bridge_words, word1, word2):
def print_bridge_words(self,bridge_words,word1,word2):
if not bridge_words:
print("No bridge words from", word1, "to", word2, "!")
@ -161,11 +169,7 @@ class Tu:
word1 = self.input_check(word1)
word2 = self.input_check(word2)
bridge_words = self.find_bridge_words(word1, word2)
if bridge_words:
self.print_bridge_words(bridge_words,word1,word2)
return bridge_words
else:
return bridge_words
def insert_bridge_words(self, text):
@ -198,42 +202,24 @@ class Tu:
print("There are upper characters in your input")
print(self.insert_bridge_words(text_re))
def find_shortest_path_old(self, word1, word2):
def find_shortest_path(self,word1, word2):
graph=self.graph
try:
shortest_path_generator = (
nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight'))
shortest_length = (
nx.shortest_path_length(graph, source=word1, target=word2, weight='weight'))
shortest_path_generator = nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight')
shortest_length = nx.shortest_path_length(graph, source=word1, target=word2, weight='weight')
return shortest_path_generator, shortest_length
except nx.NetworkXNoPath:
return None, None
def find_shortest_path_re(self,word1, word2):
graph=self.graph
try:
shortest_path_generator = self.all_simple_paths_graph(word1, word2)
shortest_length=self.calc_shortest_path_len(word1,word2)
return shortest_path_generator, shortest_length
except nx.NetworkXNoPath:
return None, None
def find_shortest_path(self, word1, word2):
try:
(shortest_path_list, shortest_length) = self.calc_shortest_path_len(word1, word2)
return shortest_path_list, shortest_length
except nx.NetworkXNoPath:
return None, None
def find_shortest_path_ex(self, word1, word2):
try:
shortest_path_generator = self.all_simple_paths_graph(word1, word2)
shortest_length = self.calc_shortest_path_len(word1, word2)
shortest_path_list = []
for shortest_path in shortest_path_generator:
if shortest_path.__len__() == shortest_length:
shortest_path_list.append(shortest_path)
return shortest_path_list, shortest_length
except nx.NetworkXNoPath:
return None, None
def draw_shortest_path(self, shortest_path_list):
graph=self.graph
@ -241,6 +227,7 @@ class Tu:
# !!! HUATU ROLL YANSE
pos = nx.spring_layout(graph)
nx.draw_networkx_nodes(graph, pos, node_size=1000, node_color="skyblue")
nx.draw_networkx_labels(graph, pos, font_size=10, font_weight="bold")
@ -255,19 +242,18 @@ class Tu:
#print(shortest_path)
if (edge in zip(shortest_path[:-1], shortest_path[1:]) or
edge in zip(shortest_path[1:], shortest_path[:-1])):
if edge in zip(shortest_path[:-1], shortest_path[1:]) or edge in zip(shortest_path[1:], shortest_path[:-1]):
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num,
arrows=True, arrowstyle="->", arrowsize=30,
connectionstyle='arc3,rad=0.2')
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num, arrows=True,arrowstyle="->",arrowsize=30
,connectionstyle='arc3,rad=0.2')
else:
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0,
edge_color="black",
arrows=True, arrowstyle="->", arrowsize=30,
connectionstyle='arc3,rad=0.2')
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0, edge_color="black", arrows=True,arrowstyle="->",arrowsize=30
,connectionstyle='arc3,rad=0.2')
plt.show()
time.sleep(1)
def calcShortestPath(self,word1, word2):
if word2 == "":
@ -285,9 +271,10 @@ class Tu:
self.calc_shortest_path(word1,word2)
pass
def calc_shortest_path_old(self, word1, word2):
shortest_path_generator, shortest_length = self.find_shortest_path_old(word1, word2)
def calc_shortest_path(self,word1, word2):
shortest_path_generator, shortest_length = self.find_shortest_path_re(word1, word2)
shortest_path_list=[]
for shortest_path in shortest_path_generator:
@ -301,27 +288,13 @@ class Tu:
else:
print("No path exists between", word1, "and", word2)
def calc_shortest_path(self, word1, word2):
shortest_path_list, shortest_length = self.find_shortest_path_ex(word1, word2)
for shortest_path in shortest_path_list:
if shortest_path:
print("Shortest path:", ''.join(shortest_path))
print("Length of shortest path:", shortest_length)
if shortest_path_list.__len__() > 0:
self.draw_shortest_path(shortest_path_list)
else:
print("No path exists between", word1, "and", word2)
def random_traversal(self):
# 用户输入文件名
filename = input("Enter the filename to save traversal results: ")
filename+=".txt"
graph=copy.deepcopy(self.dict)
start_node = random.choice(list(graph.keys()))
visited_nodes = set()
@ -336,7 +309,7 @@ class Tu:
if input()=="@":
file.close()
break
if graph.get(current_node) is not None:
if graph.get(current_node) != None:
pass
else:
break
@ -356,10 +329,11 @@ class Tu:
def randomWalk(self):
self.random_traversal()
@staticmethod
def input_check(input_word):
def input_check(self, input_word):
(input_word_re,input_word_ren)=re.subn(r'[^a-zA-Z\n]', ' ', input_word)
if input_word_ren>0 :
print("There are illegal signs in your input,the amount is "+str(input_word_ren))
@ -371,6 +345,7 @@ class Tu:
return tmp[0]
def all_simple_paths_graph(self, source: str, targets: str) -> Generator[List[str], None, None]:
G = self.graph
cutoff = len(G) - 1 # 设置路径的最大深度,防止无限循环。
@ -399,15 +374,13 @@ class Tu:
stack.pop()
visited.popitem()
def calc_shortest_path_len(self, word1: str, word2: str) -> int:
def calc_shortest_path_len(self, word1: str, word2: str) -> str:
if word1 not in self.graph.nodes or word2 not in self.graph.nodes:
return 0
return ""
distances = {node: inf for node in self.graph.nodes}
# 存储word1到所有结点的距离初始化为无穷大
previous_nodes: Dict[str, Optional[str]] = {node: None for node in
self.graph.nodes} # 存储每个节点最短路径中的前一个节点初始化为None
distances = {node: inf for node in self.graph.nodes} # 存储word1到所有结点的距离初始化为无穷大
previous_nodes: Dict[str, Optional[str]] = {node: None for node in self.graph.nodes} # 存储每个节点最短路径中的前一个节点初始化为None
distances[word1] = 0 # 距离初始化为0
priority_queue = [(0, word1)] # 优先级队列,用于按照从小到大获取节点
@ -439,9 +412,9 @@ class Tu:
path.insert(0, current_node)
if isinf(distances[word2]): # 目标节点不可达
return 0
return ""
return path.__len__()
# return (' '.join(path),path.__len__())
return ' '.join(path)
if __name__ == '__main__':

70
test.py
View File

@ -1,70 +0,0 @@
import unittest
from oop import Tu
class TextProcessor(Tu):
def __init__(self):
super().__init__()
class TestQueryBridgeWords(unittest.TestCase):
def setUp(self):
# Initialize a graph for testing
self.graph = {
'a': {'b': 1, 'c': 2},
'b': {'c': 1, 'd': 2},
'c': {'d': 1},
'x': {},
'z': {}
}
self.processor = TextProcessor()
self.processor.generate_directed_dict(self.processor.read_text_file("1.txt"))
self.processor.generate_directed_graph()
def test_valid_bridge_words_exist(self):
# Valid equivalence class: bridge words exist
result = self.processor.queryBridgeWords('the', 'floor')
self.assertIn('forest', result)
def test_valid_bridge_words_not_exist(self):
# Valid equivalence class: no bridge words
result = self.processor.queryBridgeWords('on', 'the')
self.assertEqual(result, [])
def test_invalid_word1_not_in_graph(self):
# Invalid equivalence class: word1 not in graph
result = self.processor.queryBridgeWords('an', 'a')
self.assertEqual(result, [])
def test_invalid_word2_not_in_graph(self):
# Invalid equivalence class: word2 not in graph
result = self.processor.queryBridgeWords('a', 'an')
self.assertEqual(result, [])
def test_invalid_both_words_not_in_graph(self):
# Invalid equivalence class: both words not in graph
result = self.processor.queryBridgeWords('an', 'sought')
self.assertEqual(result, [])
def test_edge_case_min_word(self):
# Edge case: minimum word
result = self.processor.queryBridgeWords('a', 'b')
self.assertEqual(result, [])
def test_edge_case_max_word(self):
# Edge case: maximum word
result = self.processor.queryBridgeWords('x', 'z')
self.assertEqual(result, [])
def test_edge_case_no_bridge_words(self):
# Edge case: no bridge words
result = self.processor.queryBridgeWords('new', 'worlds')
self.assertEqual(result, [])
def test_edge_case_single_bridge_word(self):
# Edge case: single bridge word
result = self.processor.queryBridgeWords('the', 'floor')
self.assertIn('forest', result)
if __name__ == '__main__':
unittest.main()