Compare commits
No commits in common. "a0ef3f08180d3dcbaf3846265c32cfc7cb1789c5" and "bf5842d489791c1ceb591ee38bda3eef77fa4078" have entirely different histories.
a0ef3f0818
...
bf5842d489
247
oop.py
247
oop.py
|
@ -1,70 +1,69 @@
|
|||
import copy
|
||||
import heapq
|
||||
import re
|
||||
import sys
|
||||
import time
|
||||
from math import isinf, inf
|
||||
from math import isinf,inf
|
||||
import matplotlib.patches
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
from typing import Dict, Generator, List, Optional
|
||||
from typing import Dict, Generator, List, Optional, cast
|
||||
import random
|
||||
import os
|
||||
|
||||
|
||||
def main():
|
||||
# print("Welcome to Lab1")
|
||||
print("功能5中输入@停止功能")
|
||||
tu = None
|
||||
|
||||
while True:
|
||||
|
||||
i = input("请输入操作(q:退出, 0:读入文件, 1:展示图形, 2:查找桥接词, 3:生成新文本, 4:计算最短路径, 5:随机游走):")
|
||||
if i == "q":
|
||||
sys.exit()
|
||||
if i == "0":
|
||||
tu = Tu()
|
||||
if i == "q" :
|
||||
exit(0)
|
||||
if i == "0": #shengchengTu
|
||||
tu=Tu()
|
||||
|
||||
file_name = input("请输入文件名称:")
|
||||
file_name=input("请输入文件名称:")
|
||||
|
||||
tu.generate_directed_dict(tu.read_text_file(file_name))
|
||||
tu.generate_directed_graph()
|
||||
continue
|
||||
if tu is None:
|
||||
if tu is None :
|
||||
print("未找到有效的图")
|
||||
|
||||
continue
|
||||
|
||||
if i == "1":
|
||||
tu.drawDirectedGraph()
|
||||
elif i == "2":
|
||||
elif i == "2" :
|
||||
word1 = input("Enter the word1:")
|
||||
word2 = input("Enter the word2:")
|
||||
|
||||
tu.queryBridgeWords(word1, word2)
|
||||
elif i == "3":
|
||||
tu.queryBridgeWords(word1,word2)
|
||||
elif i == "3" :
|
||||
text = input("Enter the text:")
|
||||
tu.generateNewText(text)
|
||||
|
||||
elif i == "4":
|
||||
elif i== "4" :
|
||||
word1 = input("Enter the word1:")
|
||||
word2 = input("Enter the word2,just '' is all")
|
||||
tu.calcShortestPath(word1, word2)
|
||||
tu.calcShortestPath(word1,word2)
|
||||
|
||||
elif i == "5":
|
||||
elif i == "5" :
|
||||
tu.randomWalk()
|
||||
|
||||
else:
|
||||
print("Invalid input")
|
||||
|
||||
|
||||
class Tu:
|
||||
def __init__(self):
|
||||
self.dict = {}
|
||||
self.graph = nx.MultiDiGraph()
|
||||
|
||||
@staticmethod
|
||||
def read_text_file(filename):
|
||||
class Tu :
|
||||
def __init__(self):
|
||||
self.dict={}
|
||||
self.graph=nx.MultiDiGraph()
|
||||
|
||||
def read_text_file(self,filename):
|
||||
try:
|
||||
with open(filename, 'r', encoding="utf-8") as file:
|
||||
with open(filename, 'r') as file:
|
||||
text = file.read()
|
||||
# 用正则表达式将非字母字符替换为空格,并将换行符也替换为空格
|
||||
text = re.sub(r'[^a-zA-Z\n]+', ' ', text)
|
||||
|
@ -76,8 +75,8 @@ class Tu:
|
|||
print("File not found.")
|
||||
return []
|
||||
|
||||
def generate_directed_dict(self, word_sequence):
|
||||
graph = self.dict
|
||||
def generate_directed_dict(self,word_sequence):
|
||||
graph = self.dict #chunfuzhi,yiqigai
|
||||
for i in range(len(word_sequence) - 1):
|
||||
current_word = word_sequence[i]
|
||||
next_word = word_sequence[i + 1]
|
||||
|
@ -96,7 +95,7 @@ class Tu:
|
|||
return graph
|
||||
|
||||
def generate_directed_graph(self):
|
||||
G = self.graph # wufuzhi,yiqigai
|
||||
G = self.graph #wufuzhi,yiqigai
|
||||
graph = self.dict
|
||||
# 添加节点和边
|
||||
for node, neighbors in graph.items():
|
||||
|
@ -108,12 +107,11 @@ class Tu:
|
|||
return G
|
||||
|
||||
def draw_directed_graph(self):
|
||||
G = self.graph
|
||||
G=self.graph
|
||||
pos = nx.spring_layout(G)
|
||||
plt.rcParams['figure.figsize'] = (12.8, 7.2)
|
||||
nx.draw_networkx(G, pos, with_labels=True, node_size=1000,
|
||||
node_color="skyblue", edge_color="black", font_size=10,
|
||||
font_weight="bold", arrows=True, connectionstyle='arc3,rad=0.2')
|
||||
|
||||
nx.draw_networkx(G, pos, with_labels=True, node_size=1000, node_color="skyblue",edge_color="black", font_size=10, font_weight="bold",
|
||||
arrows=True, connectionstyle='arc3,rad=0.2')
|
||||
edge_labels = nx.get_edge_attributes(G, 'weight')
|
||||
# 调整箭头位置
|
||||
for edge, weight in edge_labels.items():
|
||||
|
@ -121,11 +119,9 @@ class Tu:
|
|||
dx = pos[edge[0]][0] - pos[edge[1]][0]
|
||||
dy = pos[edge[0]][1] - pos[edge[1]][1]
|
||||
plt.annotate(weight, (
|
||||
(pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1,
|
||||
(pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1))
|
||||
(pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1, (pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1))
|
||||
else: # 反向边不存在
|
||||
plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2,
|
||||
(pos[edge[0]][1] + pos[edge[1]][1]) / 2))
|
||||
plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2, (pos[edge[0]][1] + pos[edge[1]][1]) / 2))
|
||||
plt.show()
|
||||
|
||||
def drawDirectedGraph(self):
|
||||
|
@ -138,15 +134,27 @@ class Tu:
|
|||
print("No", word1, "or", word2, "in the graph!")
|
||||
return []
|
||||
|
||||
bridge_words = [
|
||||
word for word in graph[word1]
|
||||
if word2 in graph.get(word, {})
|
||||
]
|
||||
bridge_words = []
|
||||
bridge_words_origin = []
|
||||
for bridge_word in graph:
|
||||
if word1 == bridge_word:
|
||||
bridge_words = list(graph[bridge_word].keys())
|
||||
bridge_words_origin = copy.deepcopy(bridge_words)
|
||||
|
||||
for wordi in bridge_words_origin:
|
||||
|
||||
|
||||
if graph.get(wordi) != None:
|
||||
|
||||
if word2 not in graph[wordi].keys():
|
||||
bridge_words.remove(wordi)
|
||||
|
||||
else:
|
||||
bridge_words.remove(wordi)
|
||||
|
||||
return bridge_words
|
||||
|
||||
@staticmethod
|
||||
def print_bridge_words(bridge_words, word1, word2):
|
||||
def print_bridge_words(self,bridge_words,word1,word2):
|
||||
|
||||
if not bridge_words:
|
||||
print("No bridge words from", word1, "to", word2, "!")
|
||||
|
@ -157,15 +165,11 @@ class Tu:
|
|||
|
||||
return bridge_words
|
||||
|
||||
def queryBridgeWords(self, word1, word2):
|
||||
def queryBridgeWords(self,word1, word2):
|
||||
word1 = self.input_check(word1)
|
||||
word2 = self.input_check(word2)
|
||||
bridge_words = self.find_bridge_words(word1, word2)
|
||||
if bridge_words:
|
||||
self.print_bridge_words(bridge_words, word1, word2)
|
||||
return bridge_words
|
||||
else:
|
||||
return bridge_words
|
||||
self.print_bridge_words(bridge_words,word1,word2)
|
||||
|
||||
def insert_bridge_words(self, text):
|
||||
|
||||
|
@ -179,7 +183,7 @@ class Tu:
|
|||
word2 = words[i + 1].lower()
|
||||
|
||||
new_text.append(words[i])
|
||||
bridge_words = self.find_bridge_words(word1, word2)
|
||||
bridge_words = self.find_bridge_words( word1, word2)
|
||||
|
||||
if len(bridge_words) > 0:
|
||||
random_bridge_word = random.choice(bridge_words)
|
||||
|
@ -189,58 +193,41 @@ class Tu:
|
|||
|
||||
return ' '.join(new_text)
|
||||
|
||||
def generateNewText(self, text):
|
||||
def generateNewText(self,text):
|
||||
|
||||
(text_re, text_ren) = re.subn(r'[^a-zA-Z\n]+', ' ', text)
|
||||
if text_ren > 0:
|
||||
(text_re,text_ren)=re.subn(r'[^a-zA-Z\n]+', ' ', text)
|
||||
if text_ren>0 :
|
||||
print("There are illegal signs in your input")
|
||||
if not text_re.islower():
|
||||
print("There are upper characters in your input")
|
||||
print(self.insert_bridge_words(text_re))
|
||||
|
||||
def find_shortest_path_old(self, word1, word2):
|
||||
def find_shortest_path(self,word1, word2):
|
||||
|
||||
graph = self.graph
|
||||
graph=self.graph
|
||||
try:
|
||||
shortest_path_generator = (
|
||||
nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight'))
|
||||
shortest_length = (
|
||||
nx.shortest_path_length(graph, source=word1, target=word2, weight='weight'))
|
||||
shortest_path_generator = nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight')
|
||||
shortest_length = nx.shortest_path_length(graph, source=word1, target=word2, weight='weight')
|
||||
return shortest_path_generator, shortest_length
|
||||
except nx.NetworkXNoPath:
|
||||
return None, None
|
||||
def find_shortest_path_re(self,word1, word2):
|
||||
graph=self.graph
|
||||
try:
|
||||
shortest_path_generator = self.all_simple_paths_graph(word1, word2)
|
||||
shortest_length=self.calc_shortest_path_len(word1,word2)
|
||||
return shortest_path_generator, shortest_length
|
||||
except nx.NetworkXNoPath:
|
||||
return None, None
|
||||
|
||||
def find_shortest_path(self, word1, word2):
|
||||
|
||||
try:
|
||||
|
||||
(shortest_path_list, shortest_length) = self.calc_shortest_path_len(word1, word2)
|
||||
return shortest_path_list, shortest_length
|
||||
except nx.NetworkXNoPath:
|
||||
return None, None
|
||||
|
||||
def find_shortest_path_ex(self, word1, word2):
|
||||
|
||||
try:
|
||||
shortest_path_generator = self.all_simple_paths_graph(word1, word2)
|
||||
shortest_length = self.calc_shortest_path_len(word1, word2)
|
||||
|
||||
shortest_path_list = []
|
||||
|
||||
for shortest_path in shortest_path_generator:
|
||||
|
||||
if shortest_path.__len__() == shortest_length:
|
||||
shortest_path_list.append(shortest_path)
|
||||
return shortest_path_list, shortest_length
|
||||
except nx.NetworkXNoPath:
|
||||
return None, None
|
||||
|
||||
def draw_shortest_path(self, shortest_path_list):
|
||||
graph = self.graph
|
||||
graph=self.graph
|
||||
plt.figure(figsize=(10, 6))
|
||||
|
||||
# !!! HUATU ROLL YANSE
|
||||
|
||||
|
||||
pos = nx.spring_layout(graph)
|
||||
nx.draw_networkx_nodes(graph, pos, node_size=1000, node_color="skyblue")
|
||||
nx.draw_networkx_labels(graph, pos, font_size=10, font_weight="bold")
|
||||
|
@ -253,42 +240,42 @@ class Tu:
|
|||
|
||||
for edge in graph.edges():
|
||||
|
||||
# print(shortest_path)
|
||||
#print(shortest_path)
|
||||
|
||||
if (edge in zip(shortest_path[:-1], shortest_path[1:]) or
|
||||
edge in zip(shortest_path[1:], shortest_path[:-1])):
|
||||
if edge in zip(shortest_path[:-1], shortest_path[1:]) or edge in zip(shortest_path[1:], shortest_path[:-1]):
|
||||
|
||||
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num,
|
||||
arrows=True, arrowstyle="->", arrowsize=30,
|
||||
connectionstyle='arc3,rad=0.2')
|
||||
|
||||
|
||||
|
||||
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num, arrows=True,arrowstyle="->",arrowsize=30
|
||||
,connectionstyle='arc3,rad=0.2')
|
||||
else:
|
||||
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0,
|
||||
edge_color="black",
|
||||
arrows=True, arrowstyle="->", arrowsize=30,
|
||||
connectionstyle='arc3,rad=0.2')
|
||||
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0, edge_color="black", arrows=True,arrowstyle="->",arrowsize=30
|
||||
,connectionstyle='arc3,rad=0.2')
|
||||
plt.show()
|
||||
time.sleep(1)
|
||||
|
||||
def calcShortestPath(self, word1, word2):
|
||||
|
||||
def calcShortestPath(self,word1, word2):
|
||||
if word2 == "":
|
||||
word1 = self.input_check(word1)
|
||||
for wordtmp in self.dict:
|
||||
if wordtmp == word1:
|
||||
for wordtmp in self.dict :
|
||||
if wordtmp == word1 :
|
||||
continue
|
||||
else:
|
||||
self.calc_shortest_path(word1, wordtmp)
|
||||
self.calc_shortest_path(word1,wordtmp)
|
||||
|
||||
pass
|
||||
else:
|
||||
word1 = self.input_check(word1)
|
||||
word2 = self.input_check(word2)
|
||||
self.calc_shortest_path(word1, word2)
|
||||
self.calc_shortest_path(word1,word2)
|
||||
pass
|
||||
|
||||
def calc_shortest_path_old(self, word1, word2):
|
||||
|
||||
shortest_path_generator, shortest_length = self.find_shortest_path_old(word1, word2)
|
||||
shortest_path_list = []
|
||||
def calc_shortest_path(self,word1, word2):
|
||||
|
||||
shortest_path_generator, shortest_length = self.find_shortest_path_re(word1, word2)
|
||||
shortest_path_list=[]
|
||||
|
||||
for shortest_path in shortest_path_generator:
|
||||
|
||||
|
@ -296,22 +283,7 @@ class Tu:
|
|||
print("Shortest path:", '→'.join(shortest_path))
|
||||
print("Length of shortest path:", shortest_length)
|
||||
shortest_path_list.append(shortest_path)
|
||||
if shortest_path_list.__len__() > 0:
|
||||
self.draw_shortest_path(shortest_path_list)
|
||||
else:
|
||||
print("No path exists between", word1, "and", word2)
|
||||
|
||||
def calc_shortest_path(self, word1, word2):
|
||||
|
||||
shortest_path_list, shortest_length = self.find_shortest_path_ex(word1, word2)
|
||||
|
||||
for shortest_path in shortest_path_list:
|
||||
|
||||
if shortest_path:
|
||||
print("Shortest path:", '→'.join(shortest_path))
|
||||
print("Length of shortest path:", shortest_length)
|
||||
|
||||
if shortest_path_list.__len__() > 0:
|
||||
if shortest_path_list.__len__()>0:
|
||||
self.draw_shortest_path(shortest_path_list)
|
||||
else:
|
||||
print("No path exists between", word1, "and", word2)
|
||||
|
@ -320,9 +292,10 @@ class Tu:
|
|||
|
||||
# 用户输入文件名
|
||||
filename = input("Enter the filename to save traversal results: ")
|
||||
filename += ".txt"
|
||||
filename+=".txt"
|
||||
|
||||
graph = copy.deepcopy(self.dict)
|
||||
|
||||
graph=copy.deepcopy(self.dict)
|
||||
start_node = random.choice(list(graph.keys()))
|
||||
visited_nodes = set()
|
||||
visited_edges = []
|
||||
|
@ -333,10 +306,10 @@ class Tu:
|
|||
visited_nodes.add(current_node)
|
||||
file.write(current_node + '\n')
|
||||
print(current_node)
|
||||
if input() == "@":
|
||||
if input()=="@":
|
||||
file.close()
|
||||
break
|
||||
if graph.get(current_node) is not None:
|
||||
if graph.get(current_node) != None:
|
||||
pass
|
||||
else:
|
||||
break
|
||||
|
@ -356,21 +329,23 @@ class Tu:
|
|||
def randomWalk(self):
|
||||
self.random_traversal()
|
||||
|
||||
@staticmethod
|
||||
def input_check(input_word):
|
||||
(input_word_re, input_word_ren) = re.subn(r'[^a-zA-Z\n]', ' ', input_word)
|
||||
|
||||
if input_word_ren > 0:
|
||||
print("There are illegal signs in your input,the amount is " + str(input_word_ren))
|
||||
def input_check(self, input_word):
|
||||
(input_word_re,input_word_ren)=re.subn(r'[^a-zA-Z\n]', ' ', input_word)
|
||||
|
||||
|
||||
if input_word_ren>0 :
|
||||
print("There are illegal signs in your input,the amount is "+str(input_word_ren))
|
||||
|
||||
if not input_word_re.islower():
|
||||
print("There are upper characters in your input")
|
||||
tmp = input_word_re.lower().split()
|
||||
if len(tmp) > 1:
|
||||
tmp=input_word_re.lower().split()
|
||||
if len(tmp)>1 :
|
||||
print("There are more than one word in your input")
|
||||
|
||||
return tmp[0]
|
||||
|
||||
|
||||
def all_simple_paths_graph(self, source: str, targets: str) -> Generator[List[str], None, None]:
|
||||
G = self.graph
|
||||
cutoff = len(G) - 1 # 设置路径的最大深度,防止无限循环。
|
||||
|
@ -399,15 +374,13 @@ class Tu:
|
|||
stack.pop()
|
||||
visited.popitem()
|
||||
|
||||
def calc_shortest_path_len(self, word1: str, word2: str) -> int:
|
||||
def calc_shortest_path_len(self, word1: str, word2: str) -> str:
|
||||
|
||||
if word1 not in self.graph.nodes or word2 not in self.graph.nodes:
|
||||
return 0
|
||||
return ""
|
||||
|
||||
distances = {node: inf for node in self.graph.nodes}
|
||||
# 存储word1到所有结点的距离,初始化为无穷大
|
||||
previous_nodes: Dict[str, Optional[str]] = {node: None for node in
|
||||
self.graph.nodes} # 存储每个节点最短路径中的前一个节点,初始化为None
|
||||
distances = {node: inf for node in self.graph.nodes} # 存储word1到所有结点的距离,初始化为无穷大
|
||||
previous_nodes: Dict[str, Optional[str]] = {node: None for node in self.graph.nodes} # 存储每个节点最短路径中的前一个节点,初始化为None
|
||||
distances[word1] = 0 # 距离初始化为0
|
||||
priority_queue = [(0, word1)] # 优先级队列,用于按照从小到大获取节点
|
||||
|
||||
|
@ -439,9 +412,9 @@ class Tu:
|
|||
path.insert(0, current_node)
|
||||
|
||||
if isinf(distances[word2]): # 目标节点不可达
|
||||
return 0
|
||||
return ""
|
||||
return path.__len__()
|
||||
# return (' '.join(path),path.__len__())
|
||||
return ' '.join(path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
70
test.py
70
test.py
|
@ -1,70 +0,0 @@
|
|||
import unittest
|
||||
|
||||
from oop import Tu
|
||||
class TextProcessor(Tu):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
|
||||
|
||||
class TestQueryBridgeWords(unittest.TestCase):
|
||||
def setUp(self):
|
||||
# Initialize a graph for testing
|
||||
self.graph = {
|
||||
'a': {'b': 1, 'c': 2},
|
||||
'b': {'c': 1, 'd': 2},
|
||||
'c': {'d': 1},
|
||||
'x': {},
|
||||
'z': {}
|
||||
}
|
||||
self.processor = TextProcessor()
|
||||
self.processor.generate_directed_dict(self.processor.read_text_file("1.txt"))
|
||||
self.processor.generate_directed_graph()
|
||||
|
||||
def test_valid_bridge_words_exist(self):
|
||||
# Valid equivalence class: bridge words exist
|
||||
result = self.processor.queryBridgeWords('the', 'floor')
|
||||
self.assertIn('forest', result)
|
||||
|
||||
def test_valid_bridge_words_not_exist(self):
|
||||
# Valid equivalence class: no bridge words
|
||||
result = self.processor.queryBridgeWords('on', 'the')
|
||||
self.assertEqual(result, [])
|
||||
|
||||
def test_invalid_word1_not_in_graph(self):
|
||||
# Invalid equivalence class: word1 not in graph
|
||||
result = self.processor.queryBridgeWords('an', 'a')
|
||||
self.assertEqual(result, [])
|
||||
|
||||
def test_invalid_word2_not_in_graph(self):
|
||||
# Invalid equivalence class: word2 not in graph
|
||||
result = self.processor.queryBridgeWords('a', 'an')
|
||||
self.assertEqual(result, [])
|
||||
|
||||
def test_invalid_both_words_not_in_graph(self):
|
||||
# Invalid equivalence class: both words not in graph
|
||||
result = self.processor.queryBridgeWords('an', 'sought')
|
||||
self.assertEqual(result, [])
|
||||
|
||||
def test_edge_case_min_word(self):
|
||||
# Edge case: minimum word
|
||||
result = self.processor.queryBridgeWords('a', 'b')
|
||||
self.assertEqual(result, [])
|
||||
|
||||
def test_edge_case_max_word(self):
|
||||
# Edge case: maximum word
|
||||
result = self.processor.queryBridgeWords('x', 'z')
|
||||
self.assertEqual(result, [])
|
||||
|
||||
def test_edge_case_no_bridge_words(self):
|
||||
# Edge case: no bridge words
|
||||
result = self.processor.queryBridgeWords('new', 'worlds')
|
||||
self.assertEqual(result, [])
|
||||
|
||||
def test_edge_case_single_bridge_word(self):
|
||||
# Edge case: single bridge word
|
||||
result = self.processor.queryBridgeWords('the', 'floor')
|
||||
self.assertIn('forest', result)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in New Issue