Compare commits

...

3 Commits

Author SHA1 Message Date
qasw-987 a0ef3f0818 test heihe shaominmax 2024-06-03 17:38:15 +08:00
qasw-987 6c411c416b commit lab1-stylefixed 2024-06-03 16:28:31 +08:00
qasw-987 67c2869323 commit lab1 2024-06-03 16:20:04 +08:00
2 changed files with 204 additions and 107 deletions

155
oop.py
View File

@ -1,25 +1,26 @@
import copy import copy
import heapq import heapq
import re import re
import sys
import time
from math import isinf, inf from math import isinf, inf
import matplotlib.patches
import networkx as nx import networkx as nx
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from typing import Dict, Generator, List, Optional, cast from typing import Dict, Generator, List, Optional
import random import random
import os
def main(): def main():
# print("Welcome to Lab1") # print("Welcome to Lab1")
print("功能5中输入@停止功能") print("功能5中输入@停止功能")
tu = None tu = None
while True: while True:
i = input("请输入操作q:退出, 0:读入文件, 1:展示图形, 2:查找桥接词, 3:生成新文本, 4:计算最短路径, 5:随机游走):") i = input("请输入操作q:退出, 0:读入文件, 1:展示图形, 2:查找桥接词, 3:生成新文本, 4:计算最短路径, 5:随机游走):")
if i == "q": if i == "q":
exit(0) sys.exit()
if i == "0": #shengchengTu if i == "0":
tu = Tu() tu = Tu()
file_name = input("请输入文件名称:") file_name = input("请输入文件名称:")
@ -55,15 +56,15 @@ def main():
print("Invalid input") print("Invalid input")
class Tu: class Tu:
def __init__(self): def __init__(self):
self.dict = {} self.dict = {}
self.graph = nx.MultiDiGraph() self.graph = nx.MultiDiGraph()
def read_text_file(self,filename): @staticmethod
def read_text_file(filename):
try: try:
with open(filename, 'r') as file: with open(filename, 'r', encoding="utf-8") as file:
text = file.read() text = file.read()
# 用正则表达式将非字母字符替换为空格,并将换行符也替换为空格 # 用正则表达式将非字母字符替换为空格,并将换行符也替换为空格
text = re.sub(r'[^a-zA-Z\n]+', ' ', text) text = re.sub(r'[^a-zA-Z\n]+', ' ', text)
@ -76,7 +77,7 @@ class Tu :
return [] return []
def generate_directed_dict(self, word_sequence): def generate_directed_dict(self, word_sequence):
graph = self.dict #chunfuzhi,yiqigai graph = self.dict
for i in range(len(word_sequence) - 1): for i in range(len(word_sequence) - 1):
current_word = word_sequence[i] current_word = word_sequence[i]
next_word = word_sequence[i + 1] next_word = word_sequence[i + 1]
@ -109,9 +110,10 @@ class Tu :
def draw_directed_graph(self): def draw_directed_graph(self):
G = self.graph G = self.graph
pos = nx.spring_layout(G) pos = nx.spring_layout(G)
plt.rcParams['figure.figsize'] = (12.8, 7.2)
nx.draw_networkx(G, pos, with_labels=True, node_size=1000, node_color="skyblue",edge_color="black", font_size=10, font_weight="bold", nx.draw_networkx(G, pos, with_labels=True, node_size=1000,
arrows=True, connectionstyle='arc3,rad=0.2') node_color="skyblue", edge_color="black", font_size=10,
font_weight="bold", arrows=True, connectionstyle='arc3,rad=0.2')
edge_labels = nx.get_edge_attributes(G, 'weight') edge_labels = nx.get_edge_attributes(G, 'weight')
# 调整箭头位置 # 调整箭头位置
for edge, weight in edge_labels.items(): for edge, weight in edge_labels.items():
@ -119,9 +121,11 @@ class Tu :
dx = pos[edge[0]][0] - pos[edge[1]][0] dx = pos[edge[0]][0] - pos[edge[1]][0]
dy = pos[edge[0]][1] - pos[edge[1]][1] dy = pos[edge[0]][1] - pos[edge[1]][1]
plt.annotate(weight, ( plt.annotate(weight, (
(pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1, (pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1)) (pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1,
(pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1))
else: # 反向边不存在 else: # 反向边不存在
plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2, (pos[edge[0]][1] + pos[edge[1]][1]) / 2)) plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2,
(pos[edge[0]][1] + pos[edge[1]][1]) / 2))
plt.show() plt.show()
def drawDirectedGraph(self): def drawDirectedGraph(self):
@ -134,27 +138,15 @@ class Tu :
print("No", word1, "or", word2, "in the graph!") print("No", word1, "or", word2, "in the graph!")
return [] return []
bridge_words = [] bridge_words = [
bridge_words_origin = [] word for word in graph[word1]
for bridge_word in graph: if word2 in graph.get(word, {})
if word1 == bridge_word: ]
bridge_words = list(graph[bridge_word].keys())
bridge_words_origin = copy.deepcopy(bridge_words)
for wordi in bridge_words_origin:
if graph.get(wordi) != None:
if word2 not in graph[wordi].keys():
bridge_words.remove(wordi)
else:
bridge_words.remove(wordi)
return bridge_words return bridge_words
def print_bridge_words(self,bridge_words,word1,word2): @staticmethod
def print_bridge_words(bridge_words, word1, word2):
if not bridge_words: if not bridge_words:
print("No bridge words from", word1, "to", word2, "!") print("No bridge words from", word1, "to", word2, "!")
@ -169,7 +161,11 @@ class Tu :
word1 = self.input_check(word1) word1 = self.input_check(word1)
word2 = self.input_check(word2) word2 = self.input_check(word2)
bridge_words = self.find_bridge_words(word1, word2) bridge_words = self.find_bridge_words(word1, word2)
if bridge_words:
self.print_bridge_words(bridge_words, word1, word2) self.print_bridge_words(bridge_words, word1, word2)
return bridge_words
else:
return bridge_words
def insert_bridge_words(self, text): def insert_bridge_words(self, text):
@ -202,32 +198,49 @@ class Tu :
print("There are upper characters in your input") print("There are upper characters in your input")
print(self.insert_bridge_words(text_re)) print(self.insert_bridge_words(text_re))
def find_shortest_path(self,word1, word2): def find_shortest_path_old(self, word1, word2):
graph = self.graph graph = self.graph
try: try:
shortest_path_generator = nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight') shortest_path_generator = (
shortest_length = nx.shortest_path_length(graph, source=word1, target=word2, weight='weight') nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight'))
shortest_length = (
nx.shortest_path_length(graph, source=word1, target=word2, weight='weight'))
return shortest_path_generator, shortest_length return shortest_path_generator, shortest_length
except nx.NetworkXNoPath: except nx.NetworkXNoPath:
return None, None return None, None
def find_shortest_path_re(self,word1, word2):
graph=self.graph def find_shortest_path(self, word1, word2):
try:
(shortest_path_list, shortest_length) = self.calc_shortest_path_len(word1, word2)
return shortest_path_list, shortest_length
except nx.NetworkXNoPath:
return None, None
def find_shortest_path_ex(self, word1, word2):
try: try:
shortest_path_generator = self.all_simple_paths_graph(word1, word2) shortest_path_generator = self.all_simple_paths_graph(word1, word2)
shortest_length = self.calc_shortest_path_len(word1, word2) shortest_length = self.calc_shortest_path_len(word1, word2)
return shortest_path_generator, shortest_length
shortest_path_list = []
for shortest_path in shortest_path_generator:
if shortest_path.__len__() == shortest_length:
shortest_path_list.append(shortest_path)
return shortest_path_list, shortest_length
except nx.NetworkXNoPath: except nx.NetworkXNoPath:
return None, None return None, None
def draw_shortest_path(self, shortest_path_list): def draw_shortest_path(self, shortest_path_list):
graph = self.graph graph = self.graph
plt.figure(figsize=(10, 6)) plt.figure(figsize=(10, 6))
# !!! HUATU ROLL YANSE # !!! HUATU ROLL YANSE
pos = nx.spring_layout(graph) pos = nx.spring_layout(graph)
nx.draw_networkx_nodes(graph, pos, node_size=1000, node_color="skyblue") nx.draw_networkx_nodes(graph, pos, node_size=1000, node_color="skyblue")
nx.draw_networkx_labels(graph, pos, font_size=10, font_weight="bold") nx.draw_networkx_labels(graph, pos, font_size=10, font_weight="bold")
@ -242,18 +255,19 @@ class Tu :
# print(shortest_path) # print(shortest_path)
if edge in zip(shortest_path[:-1], shortest_path[1:]) or edge in zip(shortest_path[1:], shortest_path[:-1]): if (edge in zip(shortest_path[:-1], shortest_path[1:]) or
edge in zip(shortest_path[1:], shortest_path[:-1])):
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num,
arrows=True, arrowstyle="->", arrowsize=30,
connectionstyle='arc3,rad=0.2')
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num, arrows=True,arrowstyle="->",arrowsize=30
,connectionstyle='arc3,rad=0.2')
else: else:
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0, edge_color="black", arrows=True,arrowstyle="->",arrowsize=30 nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0,
,connectionstyle='arc3,rad=0.2') edge_color="black",
arrows=True, arrowstyle="->", arrowsize=30,
connectionstyle='arc3,rad=0.2')
plt.show() plt.show()
time.sleep(1)
def calcShortestPath(self, word1, word2): def calcShortestPath(self, word1, word2):
if word2 == "": if word2 == "":
@ -271,10 +285,9 @@ class Tu :
self.calc_shortest_path(word1, word2) self.calc_shortest_path(word1, word2)
pass pass
def calc_shortest_path_old(self, word1, word2):
def calc_shortest_path(self,word1, word2): shortest_path_generator, shortest_length = self.find_shortest_path_old(word1, word2)
shortest_path_generator, shortest_length = self.find_shortest_path_re(word1, word2)
shortest_path_list = [] shortest_path_list = []
for shortest_path in shortest_path_generator: for shortest_path in shortest_path_generator:
@ -288,13 +301,27 @@ class Tu :
else: else:
print("No path exists between", word1, "and", word2) print("No path exists between", word1, "and", word2)
def calc_shortest_path(self, word1, word2):
shortest_path_list, shortest_length = self.find_shortest_path_ex(word1, word2)
for shortest_path in shortest_path_list:
if shortest_path:
print("Shortest path:", ''.join(shortest_path))
print("Length of shortest path:", shortest_length)
if shortest_path_list.__len__() > 0:
self.draw_shortest_path(shortest_path_list)
else:
print("No path exists between", word1, "and", word2)
def random_traversal(self): def random_traversal(self):
# 用户输入文件名 # 用户输入文件名
filename = input("Enter the filename to save traversal results: ") filename = input("Enter the filename to save traversal results: ")
filename += ".txt" filename += ".txt"
graph = copy.deepcopy(self.dict) graph = copy.deepcopy(self.dict)
start_node = random.choice(list(graph.keys())) start_node = random.choice(list(graph.keys()))
visited_nodes = set() visited_nodes = set()
@ -309,7 +336,7 @@ class Tu :
if input() == "@": if input() == "@":
file.close() file.close()
break break
if graph.get(current_node) != None: if graph.get(current_node) is not None:
pass pass
else: else:
break break
@ -329,11 +356,10 @@ class Tu :
def randomWalk(self): def randomWalk(self):
self.random_traversal() self.random_traversal()
@staticmethod
def input_check(self, input_word): def input_check(input_word):
(input_word_re, input_word_ren) = re.subn(r'[^a-zA-Z\n]', ' ', input_word) (input_word_re, input_word_ren) = re.subn(r'[^a-zA-Z\n]', ' ', input_word)
if input_word_ren > 0: if input_word_ren > 0:
print("There are illegal signs in your input,the amount is " + str(input_word_ren)) print("There are illegal signs in your input,the amount is " + str(input_word_ren))
@ -345,7 +371,6 @@ class Tu :
return tmp[0] return tmp[0]
def all_simple_paths_graph(self, source: str, targets: str) -> Generator[List[str], None, None]: def all_simple_paths_graph(self, source: str, targets: str) -> Generator[List[str], None, None]:
G = self.graph G = self.graph
cutoff = len(G) - 1 # 设置路径的最大深度,防止无限循环。 cutoff = len(G) - 1 # 设置路径的最大深度,防止无限循环。
@ -374,13 +399,15 @@ class Tu :
stack.pop() stack.pop()
visited.popitem() visited.popitem()
def calc_shortest_path_len(self, word1: str, word2: str) -> str: def calc_shortest_path_len(self, word1: str, word2: str) -> int:
if word1 not in self.graph.nodes or word2 not in self.graph.nodes: if word1 not in self.graph.nodes or word2 not in self.graph.nodes:
return "" return 0
distances = {node: inf for node in self.graph.nodes} # 存储word1到所有结点的距离初始化为无穷大 distances = {node: inf for node in self.graph.nodes}
previous_nodes: Dict[str, Optional[str]] = {node: None for node in self.graph.nodes} # 存储每个节点最短路径中的前一个节点初始化为None # 存储word1到所有结点的距离初始化为无穷大
previous_nodes: Dict[str, Optional[str]] = {node: None for node in
self.graph.nodes} # 存储每个节点最短路径中的前一个节点初始化为None
distances[word1] = 0 # 距离初始化为0 distances[word1] = 0 # 距离初始化为0
priority_queue = [(0, word1)] # 优先级队列,用于按照从小到大获取节点 priority_queue = [(0, word1)] # 优先级队列,用于按照从小到大获取节点
@ -412,9 +439,9 @@ class Tu :
path.insert(0, current_node) path.insert(0, current_node)
if isinf(distances[word2]): # 目标节点不可达 if isinf(distances[word2]): # 目标节点不可达
return "" return 0
return path.__len__() return path.__len__()
return ' '.join(path) # return (' '.join(path),path.__len__())
if __name__ == '__main__': if __name__ == '__main__':

70
test.py Normal file
View File

@ -0,0 +1,70 @@
import unittest
from oop import Tu
class TextProcessor(Tu):
def __init__(self):
super().__init__()
class TestQueryBridgeWords(unittest.TestCase):
def setUp(self):
# Initialize a graph for testing
self.graph = {
'a': {'b': 1, 'c': 2},
'b': {'c': 1, 'd': 2},
'c': {'d': 1},
'x': {},
'z': {}
}
self.processor = TextProcessor()
self.processor.generate_directed_dict(self.processor.read_text_file("1.txt"))
self.processor.generate_directed_graph()
def test_valid_bridge_words_exist(self):
# Valid equivalence class: bridge words exist
result = self.processor.queryBridgeWords('the', 'floor')
self.assertIn('forest', result)
def test_valid_bridge_words_not_exist(self):
# Valid equivalence class: no bridge words
result = self.processor.queryBridgeWords('on', 'the')
self.assertEqual(result, [])
def test_invalid_word1_not_in_graph(self):
# Invalid equivalence class: word1 not in graph
result = self.processor.queryBridgeWords('an', 'a')
self.assertEqual(result, [])
def test_invalid_word2_not_in_graph(self):
# Invalid equivalence class: word2 not in graph
result = self.processor.queryBridgeWords('a', 'an')
self.assertEqual(result, [])
def test_invalid_both_words_not_in_graph(self):
# Invalid equivalence class: both words not in graph
result = self.processor.queryBridgeWords('an', 'sought')
self.assertEqual(result, [])
def test_edge_case_min_word(self):
# Edge case: minimum word
result = self.processor.queryBridgeWords('a', 'b')
self.assertEqual(result, [])
def test_edge_case_max_word(self):
# Edge case: maximum word
result = self.processor.queryBridgeWords('x', 'z')
self.assertEqual(result, [])
def test_edge_case_no_bridge_words(self):
# Edge case: no bridge words
result = self.processor.queryBridgeWords('new', 'worlds')
self.assertEqual(result, [])
def test_edge_case_single_bridge_word(self):
# Edge case: single bridge word
result = self.processor.queryBridgeWords('the', 'floor')
self.assertIn('forest', result)
if __name__ == '__main__':
unittest.main()