import copy import heapq import re import sys import time from math import isinf, inf import networkx as nx import matplotlib.pyplot as plt from typing import Dict, Generator, List, Optional import random def main(): # print("Welcome to Lab1") print("功能5中输入@停止功能") tu = None while True: i = input("请输入操作(q:退出, 0:读入文件, 1:展示图形, 2:查找桥接词, 3:生成新文本, 4:计算最短路径, 5:随机游走):") if i == "q": sys.exit() if i == "0": tu = Tu() file_name = input("请输入文件名称:") tu.generate_directed_dict(tu.read_text_file(file_name)) tu.generate_directed_graph() continue if tu is None: print("未找到有效的图") continue if i == "1": tu.drawDirectedGraph() elif i == "2": word1 = input("Enter the word1:") word2 = input("Enter the word2:") tu.queryBridgeWords(word1, word2) elif i == "3": text = input("Enter the text:") tu.generateNewText(text) elif i == "4": word1 = input("Enter the word1:") word2 = input("Enter the word2,just '' is all") tu.calcShortestPath(word1, word2) elif i == "5": tu.randomWalk() else: print("Invalid input") class Tu: def __init__(self): self.dict = {} self.graph = nx.MultiDiGraph() @staticmethod def read_text_file(filename): try: with open(filename, 'r', encoding="utf-8") as file: text = file.read() # 用正则表达式将非字母字符替换为空格,并将换行符也替换为空格 text = re.sub(r'[^a-zA-Z\n]+', ' ', text) # 将文本转换为小写,并按空格分割成单词列表 word_sequence = text.lower().split() print(word_sequence) return word_sequence except FileNotFoundError: print("File not found.") return [] def generate_directed_dict(self, word_sequence): graph = self.dict for i in range(len(word_sequence) - 1): current_word = word_sequence[i] next_word = word_sequence[i + 1] # 忽略空字符串 if current_word == '' or next_word == '': continue # 将当前单词和下一个单词添加到图中 if current_word not in graph: graph[current_word] = {} if next_word not in graph[current_word]: graph[current_word][next_word] = 1 else: graph[current_word][next_word] += 1 # draw_directed_graph(graph) return graph def generate_directed_graph(self): G = self.graph # wufuzhi,yiqigai graph = self.dict # 添加节点和边 for node, neighbors in graph.items(): for neighbor, weight in neighbors.items(): G.add_edge(node, neighbor, weight=weight) # 如果存在相反方向的边,则再画一个箭头 # if neighbor in graph and node in graph[neighbor]: # G.add_edge(neighbor, node, weight=graph[neighbor][node]) return G def draw_directed_graph(self): G = self.graph pos = nx.spring_layout(G) plt.rcParams['figure.figsize'] = (12.8, 7.2) nx.draw_networkx(G, pos, with_labels=True, node_size=1000, node_color="skyblue", edge_color="black", font_size=10, font_weight="bold", arrows=True, connectionstyle='arc3,rad=0.2') edge_labels = nx.get_edge_attributes(G, 'weight') # 调整箭头位置 for edge, weight in edge_labels.items(): if G.has_edge(*edge[::-1]): # 检查反向边是否存在于图中 dx = pos[edge[0]][0] - pos[edge[1]][0] dy = pos[edge[0]][1] - pos[edge[1]][1] plt.annotate(weight, ( (pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1, (pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1)) else: # 反向边不存在 plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2, (pos[edge[0]][1] + pos[edge[1]][1]) / 2)) plt.show() def drawDirectedGraph(self): self.draw_directed_graph() def find_bridge_words(self, word1, word2): graph = self.dict if word1 not in graph or word2 not in graph: print("No", word1, "or", word2, "in the graph!") return [] bridge_words = [ word for word in graph[word1] if word2 in graph.get(word, {}) ] return bridge_words @staticmethod def print_bridge_words(bridge_words, word1, word2): if not bridge_words: print("No bridge words from", word1, "to", word2, "!") return [] else: bridge_words_str = ", ".join(bridge_words) print("The bridge words from", word1, "to", word2, "are:", bridge_words_str + ".") return bridge_words def queryBridgeWords(self, word1, word2): word1 = self.input_check(word1) word2 = self.input_check(word2) bridge_words = self.find_bridge_words(word1, word2) if bridge_words: self.print_bridge_words(bridge_words, word1, word2) return bridge_words else: return bridge_words def insert_bridge_words(self, text): words = text.split() new_text = [] for i in range(len(words) - 1): word1 = words[i].lower() word2 = words[i + 1].lower() new_text.append(words[i]) bridge_words = self.find_bridge_words(word1, word2) if len(bridge_words) > 0: random_bridge_word = random.choice(bridge_words) new_text.append(random_bridge_word) new_text.append(words[-1]) return ' '.join(new_text) def generateNewText(self, text): (text_re, text_ren) = re.subn(r'[^a-zA-Z\n]+', ' ', text) if text_ren > 0: print("There are illegal signs in your input") if not text_re.islower(): print("There are upper characters in your input") print(self.insert_bridge_words(text_re)) def find_shortest_path_old(self, word1, word2): graph = self.graph try: shortest_path_generator = ( nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight')) shortest_length = ( nx.shortest_path_length(graph, source=word1, target=word2, weight='weight')) return shortest_path_generator, shortest_length except nx.NetworkXNoPath: return None, None def find_shortest_path(self, word1, word2): try: (shortest_path_list, shortest_length) = self.calc_shortest_path_len(word1, word2) return shortest_path_list, shortest_length except nx.NetworkXNoPath: return None, None def find_shortest_path_ex(self, word1, word2): try: shortest_path_generator = self.all_simple_paths_graph(word1, word2) shortest_length = self.calc_shortest_path_len(word1, word2) shortest_path_list = [] for shortest_path in shortest_path_generator: if shortest_path.__len__() == shortest_length: shortest_path_list.append(shortest_path) return shortest_path_list, shortest_length except nx.NetworkXNoPath: return None, None def draw_shortest_path(self, shortest_path_list): graph = self.graph plt.figure(figsize=(10, 6)) # !!! HUATU ROLL YANSE pos = nx.spring_layout(graph) nx.draw_networkx_nodes(graph, pos, node_size=1000, node_color="skyblue") nx.draw_networkx_labels(graph, pos, font_size=10, font_weight="bold") for shortest_path in shortest_path_list: colorslist = '0123456789ABCDEF' num = "#" for i in range(6): num += random.choice(colorslist) for edge in graph.edges(): # print(shortest_path) if (edge in zip(shortest_path[:-1], shortest_path[1:]) or edge in zip(shortest_path[1:], shortest_path[:-1])): nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num, arrows=True, arrowstyle="->", arrowsize=30, connectionstyle='arc3,rad=0.2') else: nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0, edge_color="black", arrows=True, arrowstyle="->", arrowsize=30, connectionstyle='arc3,rad=0.2') plt.show() time.sleep(1) def calcShortestPath(self, word1, word2): if word2 == "": word1 = self.input_check(word1) if word1 not in self.graph : print("No", word1, "or", word2, "in the graph!") return [], 0 for wordtmp in self.dict: if wordtmp == word1: continue else: result=self.calc_shortest_path(word1, wordtmp) if result == []: print("No path exists between", word1, "and", word2) else: print(result) pass else: if word1 not in self.graph or word2 not in self.graph: print("No", word1, "or", word2, "in the graph!") return [], 0 word1 = self.input_check(word1) word2 = self.input_check(word2) result = self.calc_shortest_path(word1, word2) pass if result==[] : print("No path exists between", word1, "and", word2) else: print(result) result_len = 0 if result==[] or result is None else len(result[0])-1 return result,result_len def calc_shortest_path_old(self, word1, word2): shortest_path_generator, shortest_length = self.find_shortest_path_old(word1, word2) shortest_path_list = [] for shortest_path in shortest_path_generator: if shortest_path: print("Shortest path:", '→'.join(shortest_path)) print("Length of shortest path:", shortest_length) shortest_path_list.append(shortest_path) if shortest_path_list.__len__() > 0: self.draw_shortest_path(shortest_path_list) return shortest_path_list else: return [] #print("No path exists between", word1, "and", word2) def calc_shortest_path(self, word1, word2): shortest_path_list, shortest_length = self.find_shortest_path_ex(word1, word2) for shortest_path in shortest_path_list: if shortest_path: print("Shortest path:", '→'.join(shortest_path)) print("Length of shortest path:", shortest_length) if shortest_path_list.__len__() > 0: self.draw_shortest_path(shortest_path_list) return shortest_path_list else: return [] #print("No path exists between", word1, "and", word2) def random_traversal(self): # 用户输入文件名 filename = input("Enter the filename to save traversal results: ") filename += ".txt" graph = copy.deepcopy(self.dict) start_node = random.choice(list(graph.keys())) visited_nodes = set() visited_edges = [] current_node = start_node with open(filename, 'w') as file: while True: visited_nodes.add(current_node) file.write(current_node + '\n') print(current_node) if input() == "@": file.close() break if graph.get(current_node) is not None: pass else: break neighbors = list(graph[current_node].keys()) if not neighbors: break next_node = random.choice(neighbors) visited_edges.append((current_node, next_node)) graph[current_node].pop(next_node) current_node = next_node file.close() print("Visited nodes:", visited_nodes) print("Visited edges:", visited_edges) return visited_nodes, visited_edges def randomWalk(self): self.random_traversal() @staticmethod def input_check(input_word): (input_word_re, input_word_ren) = re.subn(r'[^a-zA-Z\n]', ' ', input_word) if input_word_ren > 0: print("There are illegal signs in your input,the amount is " + str(input_word_ren)) if not input_word_re.islower(): print("There are upper characters in your input") tmp = input_word_re.lower().split() if len(tmp) > 1: print("There are more than one word in your input") return tmp[0] def all_simple_paths_graph(self, source: str, targets: str) -> Generator[List[str], None, None]: G = self.graph cutoff = len(G) - 1 # 设置路径的最大深度,防止无限循环。 visited = dict.fromkeys([source]) # 使用字典跟踪访问过的节点 stack = [iter(G[source])] # 使用栈保存当前路径中的节点迭代器 while stack: children = stack[-1] # 获取当前栈顶节点的迭代器 child = next(children, None) if child is None: stack.pop() visited.popitem() # 移除最近访问的节点 elif len(visited) < cutoff: if child in visited: continue if child == targets: yield list(visited) + [child] visited[child] = None if {targets} - set(visited.keys()): # 扩展栈直到找到目标 stack.append(iter(G[child])) else: visited.popitem() # 可能有到达子节点的其他路径 else: # 达到最大深度: for target in ({targets} & (set(children) | {child})) - set(visited.keys()): yield list(visited) + [target] stack.pop() visited.popitem() def calc_shortest_path_len(self, word1: str, word2: str) -> int: if word1 not in self.graph.nodes or word2 not in self.graph.nodes: return 0 distances = {node: inf for node in self.graph.nodes} # 存储word1到所有结点的距离,初始化为无穷大 previous_nodes: Dict[str, Optional[str]] = {node: None for node in self.graph.nodes} # 存储每个节点最短路径中的前一个节点,初始化为None distances[word1] = 0 # 距离初始化为0 priority_queue = [(0, word1)] # 优先级队列,用于按照从小到大获取节点 while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) # 优先弹出距离最小的节点 if current_node == word2: break if current_distance > distances[current_node]: continue for neighbor, attributes in self.graph[current_node].items(): # 遍历所有邻居节点及属性 weight = attributes.get('weight', 1) distance = current_distance + weight # 更新距离,当前距离加入权重 if distance < distances[neighbor]: distances[neighbor] = distance previous_nodes[neighbor] = current_node heapq.heappush(priority_queue, (distance, neighbor)) path = [] current_node = word2 while prev := previous_nodes[current_node]: # 从目标节点回溯直到起始节点 path.insert(0, current_node) current_node = prev if path: path.insert(0, current_node) if isinf(distances[word2]): # 目标节点不可达 return 0 return path.__len__() # return (' '.join(path),path.__len__()) if __name__ == '__main__': main()