449 lines
16 KiB
Python
449 lines
16 KiB
Python
import copy
|
||
import heapq
|
||
import re
|
||
import sys
|
||
import time
|
||
from math import isinf, inf
|
||
import networkx as nx
|
||
import matplotlib.pyplot as plt
|
||
from typing import Dict, Generator, List, Optional
|
||
import random
|
||
|
||
|
||
def main():
|
||
# print("Welcome to Lab1")
|
||
print("功能5中输入@停止功能")
|
||
tu = None
|
||
|
||
while True:
|
||
|
||
i = input("请输入操作(q:退出, 0:读入文件, 1:展示图形, 2:查找桥接词, 3:生成新文本, 4:计算最短路径, 5:随机游走):")
|
||
if i == "q":
|
||
sys.exit()
|
||
if i == "0":
|
||
tu = Tu()
|
||
|
||
file_name = input("请输入文件名称:")
|
||
|
||
tu.generate_directed_dict(tu.read_text_file(file_name))
|
||
tu.generate_directed_graph()
|
||
continue
|
||
if tu is None:
|
||
print("未找到有效的图")
|
||
|
||
continue
|
||
|
||
if i == "1":
|
||
tu.drawDirectedGraph()
|
||
elif i == "2":
|
||
word1 = input("Enter the word1:")
|
||
word2 = input("Enter the word2:")
|
||
|
||
tu.queryBridgeWords(word1, word2)
|
||
elif i == "3":
|
||
text = input("Enter the text:")
|
||
tu.generateNewText(text)
|
||
|
||
elif i == "4":
|
||
word1 = input("Enter the word1:")
|
||
word2 = input("Enter the word2,just '' is all")
|
||
tu.calcShortestPath(word1, word2)
|
||
|
||
elif i == "5":
|
||
tu.randomWalk()
|
||
|
||
else:
|
||
print("Invalid input")
|
||
|
||
|
||
class Tu:
|
||
def __init__(self):
|
||
self.dict = {}
|
||
self.graph = nx.MultiDiGraph()
|
||
|
||
@staticmethod
|
||
def read_text_file(filename):
|
||
try:
|
||
with open(filename, 'r', encoding="utf-8") as file:
|
||
text = file.read()
|
||
# 用正则表达式将非字母字符替换为空格,并将换行符也替换为空格
|
||
text = re.sub(r'[^a-zA-Z\n]+', ' ', text)
|
||
# 将文本转换为小写,并按空格分割成单词列表
|
||
word_sequence = text.lower().split()
|
||
print(word_sequence)
|
||
return word_sequence
|
||
except FileNotFoundError:
|
||
print("File not found.")
|
||
return []
|
||
|
||
def generate_directed_dict(self, word_sequence):
|
||
graph = self.dict
|
||
for i in range(len(word_sequence) - 1):
|
||
current_word = word_sequence[i]
|
||
next_word = word_sequence[i + 1]
|
||
# 忽略空字符串
|
||
if current_word == '' or next_word == '':
|
||
continue
|
||
# 将当前单词和下一个单词添加到图中
|
||
if current_word not in graph:
|
||
graph[current_word] = {}
|
||
if next_word not in graph[current_word]:
|
||
graph[current_word][next_word] = 1
|
||
else:
|
||
graph[current_word][next_word] += 1
|
||
|
||
# draw_directed_graph(graph)
|
||
return graph
|
||
|
||
def generate_directed_graph(self):
|
||
G = self.graph # wufuzhi,yiqigai
|
||
graph = self.dict
|
||
# 添加节点和边
|
||
for node, neighbors in graph.items():
|
||
for neighbor, weight in neighbors.items():
|
||
G.add_edge(node, neighbor, weight=weight)
|
||
# 如果存在相反方向的边,则再画一个箭头
|
||
# if neighbor in graph and node in graph[neighbor]:
|
||
# G.add_edge(neighbor, node, weight=graph[neighbor][node])
|
||
return G
|
||
|
||
def draw_directed_graph(self):
|
||
G = self.graph
|
||
pos = nx.spring_layout(G)
|
||
plt.rcParams['figure.figsize'] = (12.8, 7.2)
|
||
nx.draw_networkx(G, pos, with_labels=True, node_size=1000,
|
||
node_color="skyblue", edge_color="black", font_size=10,
|
||
font_weight="bold", arrows=True, connectionstyle='arc3,rad=0.2')
|
||
edge_labels = nx.get_edge_attributes(G, 'weight')
|
||
# 调整箭头位置
|
||
for edge, weight in edge_labels.items():
|
||
if G.has_edge(*edge[::-1]): # 检查反向边是否存在于图中
|
||
dx = pos[edge[0]][0] - pos[edge[1]][0]
|
||
dy = pos[edge[0]][1] - pos[edge[1]][1]
|
||
plt.annotate(weight, (
|
||
(pos[edge[0]][0] + pos[edge[1]][0]) / 2 + dy * 0.1,
|
||
(pos[edge[0]][1] + pos[edge[1]][1]) / 2 - dx * 0.1))
|
||
else: # 反向边不存在
|
||
plt.annotate(weight, ((pos[edge[0]][0] + pos[edge[1]][0]) / 2,
|
||
(pos[edge[0]][1] + pos[edge[1]][1]) / 2))
|
||
plt.show()
|
||
|
||
def drawDirectedGraph(self):
|
||
self.draw_directed_graph()
|
||
|
||
def find_bridge_words(self, word1, word2):
|
||
|
||
graph = self.dict
|
||
if word1 not in graph or word2 not in graph:
|
||
print("No", word1, "or", word2, "in the graph!")
|
||
return []
|
||
|
||
bridge_words = [
|
||
word for word in graph[word1]
|
||
if word2 in graph.get(word, {})
|
||
]
|
||
|
||
return bridge_words
|
||
|
||
@staticmethod
|
||
def print_bridge_words(bridge_words, word1, word2):
|
||
|
||
if not bridge_words:
|
||
print("No bridge words from", word1, "to", word2, "!")
|
||
return []
|
||
else:
|
||
bridge_words_str = ", ".join(bridge_words)
|
||
print("The bridge words from", word1, "to", word2, "are:", bridge_words_str + ".")
|
||
|
||
return bridge_words
|
||
|
||
def queryBridgeWords(self, word1, word2):
|
||
word1 = self.input_check(word1)
|
||
word2 = self.input_check(word2)
|
||
bridge_words = self.find_bridge_words(word1, word2)
|
||
if bridge_words:
|
||
self.print_bridge_words(bridge_words, word1, word2)
|
||
return bridge_words
|
||
else:
|
||
return bridge_words
|
||
|
||
def insert_bridge_words(self, text):
|
||
|
||
words = text.split()
|
||
|
||
new_text = []
|
||
|
||
for i in range(len(words) - 1):
|
||
|
||
word1 = words[i].lower()
|
||
word2 = words[i + 1].lower()
|
||
|
||
new_text.append(words[i])
|
||
bridge_words = self.find_bridge_words(word1, word2)
|
||
|
||
if len(bridge_words) > 0:
|
||
random_bridge_word = random.choice(bridge_words)
|
||
new_text.append(random_bridge_word)
|
||
|
||
new_text.append(words[-1])
|
||
|
||
return ' '.join(new_text)
|
||
|
||
def generateNewText(self, text):
|
||
|
||
(text_re, text_ren) = re.subn(r'[^a-zA-Z\n]+', ' ', text)
|
||
if text_ren > 0:
|
||
print("There are illegal signs in your input")
|
||
if not text_re.islower():
|
||
print("There are upper characters in your input")
|
||
print(self.insert_bridge_words(text_re))
|
||
|
||
def find_shortest_path_old(self, word1, word2):
|
||
|
||
graph = self.graph
|
||
try:
|
||
shortest_path_generator = (
|
||
nx.all_shortest_paths(graph, source=word1, target=word2, weight='weight'))
|
||
shortest_length = (
|
||
nx.shortest_path_length(graph, source=word1, target=word2, weight='weight'))
|
||
return shortest_path_generator, shortest_length
|
||
except nx.NetworkXNoPath:
|
||
return None, None
|
||
|
||
def find_shortest_path(self, word1, word2):
|
||
|
||
try:
|
||
|
||
(shortest_path_list, shortest_length) = self.calc_shortest_path_len(word1, word2)
|
||
return shortest_path_list, shortest_length
|
||
except nx.NetworkXNoPath:
|
||
return None, None
|
||
|
||
def find_shortest_path_ex(self, word1, word2):
|
||
|
||
try:
|
||
shortest_path_generator = self.all_simple_paths_graph(word1, word2)
|
||
shortest_length = self.calc_shortest_path_len(word1, word2)
|
||
|
||
shortest_path_list = []
|
||
|
||
for shortest_path in shortest_path_generator:
|
||
|
||
if shortest_path.__len__() == shortest_length:
|
||
shortest_path_list.append(shortest_path)
|
||
return shortest_path_list, shortest_length
|
||
except nx.NetworkXNoPath:
|
||
return None, None
|
||
|
||
def draw_shortest_path(self, shortest_path_list):
|
||
graph = self.graph
|
||
plt.figure(figsize=(10, 6))
|
||
|
||
# !!! HUATU ROLL YANSE
|
||
|
||
pos = nx.spring_layout(graph)
|
||
nx.draw_networkx_nodes(graph, pos, node_size=1000, node_color="skyblue")
|
||
nx.draw_networkx_labels(graph, pos, font_size=10, font_weight="bold")
|
||
|
||
for shortest_path in shortest_path_list:
|
||
colorslist = '0123456789ABCDEF'
|
||
num = "#"
|
||
for i in range(6):
|
||
num += random.choice(colorslist)
|
||
|
||
for edge in graph.edges():
|
||
|
||
# print(shortest_path)
|
||
|
||
if (edge in zip(shortest_path[:-1], shortest_path[1:]) or
|
||
edge in zip(shortest_path[1:], shortest_path[:-1])):
|
||
|
||
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=2.0, edge_color=num,
|
||
arrows=True, arrowstyle="->", arrowsize=30,
|
||
connectionstyle='arc3,rad=0.2')
|
||
else:
|
||
nx.draw_networkx_edges(graph, pos, edgelist=[edge], width=1.0,
|
||
edge_color="black",
|
||
arrows=True, arrowstyle="->", arrowsize=30,
|
||
connectionstyle='arc3,rad=0.2')
|
||
plt.show()
|
||
time.sleep(1)
|
||
|
||
def calcShortestPath(self, word1, word2):
|
||
if word2 == "":
|
||
word1 = self.input_check(word1)
|
||
for wordtmp in self.dict:
|
||
if wordtmp == word1:
|
||
continue
|
||
else:
|
||
self.calc_shortest_path(word1, wordtmp)
|
||
|
||
pass
|
||
else:
|
||
word1 = self.input_check(word1)
|
||
word2 = self.input_check(word2)
|
||
self.calc_shortest_path(word1, word2)
|
||
pass
|
||
|
||
def calc_shortest_path_old(self, word1, word2):
|
||
|
||
shortest_path_generator, shortest_length = self.find_shortest_path_old(word1, word2)
|
||
shortest_path_list = []
|
||
|
||
for shortest_path in shortest_path_generator:
|
||
|
||
if shortest_path:
|
||
print("Shortest path:", '→'.join(shortest_path))
|
||
print("Length of shortest path:", shortest_length)
|
||
shortest_path_list.append(shortest_path)
|
||
if shortest_path_list.__len__() > 0:
|
||
self.draw_shortest_path(shortest_path_list)
|
||
else:
|
||
print("No path exists between", word1, "and", word2)
|
||
|
||
def calc_shortest_path(self, word1, word2):
|
||
|
||
shortest_path_list, shortest_length = self.find_shortest_path_ex(word1, word2)
|
||
|
||
for shortest_path in shortest_path_list:
|
||
|
||
if shortest_path:
|
||
print("Shortest path:", '→'.join(shortest_path))
|
||
print("Length of shortest path:", shortest_length)
|
||
|
||
if shortest_path_list.__len__() > 0:
|
||
self.draw_shortest_path(shortest_path_list)
|
||
else:
|
||
print("No path exists between", word1, "and", word2)
|
||
|
||
def random_traversal(self):
|
||
|
||
# 用户输入文件名
|
||
filename = input("Enter the filename to save traversal results: ")
|
||
filename += ".txt"
|
||
|
||
graph = copy.deepcopy(self.dict)
|
||
start_node = random.choice(list(graph.keys()))
|
||
visited_nodes = set()
|
||
visited_edges = []
|
||
current_node = start_node
|
||
|
||
with open(filename, 'w') as file:
|
||
while True:
|
||
visited_nodes.add(current_node)
|
||
file.write(current_node + '\n')
|
||
print(current_node)
|
||
if input() == "@":
|
||
file.close()
|
||
break
|
||
if graph.get(current_node) is not None:
|
||
pass
|
||
else:
|
||
break
|
||
neighbors = list(graph[current_node].keys())
|
||
if not neighbors:
|
||
break
|
||
next_node = random.choice(neighbors)
|
||
visited_edges.append((current_node, next_node))
|
||
graph[current_node].pop(next_node)
|
||
current_node = next_node
|
||
|
||
file.close()
|
||
print("Visited nodes:", visited_nodes)
|
||
print("Visited edges:", visited_edges)
|
||
return visited_nodes, visited_edges
|
||
|
||
def randomWalk(self):
|
||
self.random_traversal()
|
||
|
||
@staticmethod
|
||
def input_check(input_word):
|
||
(input_word_re, input_word_ren) = re.subn(r'[^a-zA-Z\n]', ' ', input_word)
|
||
|
||
if input_word_ren > 0:
|
||
print("There are illegal signs in your input,the amount is " + str(input_word_ren))
|
||
|
||
if not input_word_re.islower():
|
||
print("There are upper characters in your input")
|
||
tmp = input_word_re.lower().split()
|
||
if len(tmp) > 1:
|
||
print("There are more than one word in your input")
|
||
|
||
return tmp[0]
|
||
|
||
def all_simple_paths_graph(self, source: str, targets: str) -> Generator[List[str], None, None]:
|
||
G = self.graph
|
||
cutoff = len(G) - 1 # 设置路径的最大深度,防止无限循环。
|
||
visited = dict.fromkeys([source]) # 使用字典跟踪访问过的节点
|
||
stack = [iter(G[source])] # 使用栈保存当前路径中的节点迭代器
|
||
while stack:
|
||
children = stack[-1] # 获取当前栈顶节点的迭代器
|
||
child = next(children, None)
|
||
|
||
if child is None:
|
||
stack.pop()
|
||
visited.popitem() # 移除最近访问的节点
|
||
elif len(visited) < cutoff:
|
||
if child in visited:
|
||
continue
|
||
if child == targets:
|
||
yield list(visited) + [child]
|
||
visited[child] = None
|
||
if {targets} - set(visited.keys()): # 扩展栈直到找到目标
|
||
stack.append(iter(G[child]))
|
||
else:
|
||
visited.popitem() # 可能有到达子节点的其他路径
|
||
else: # 达到最大深度:
|
||
for target in ({targets} & (set(children) | {child})) - set(visited.keys()):
|
||
yield list(visited) + [target]
|
||
stack.pop()
|
||
visited.popitem()
|
||
|
||
def calc_shortest_path_len(self, word1: str, word2: str) -> int:
|
||
|
||
if word1 not in self.graph.nodes or word2 not in self.graph.nodes:
|
||
return 0
|
||
|
||
distances = {node: inf for node in self.graph.nodes}
|
||
# 存储word1到所有结点的距离,初始化为无穷大
|
||
previous_nodes: Dict[str, Optional[str]] = {node: None for node in
|
||
self.graph.nodes} # 存储每个节点最短路径中的前一个节点,初始化为None
|
||
distances[word1] = 0 # 距离初始化为0
|
||
priority_queue = [(0, word1)] # 优先级队列,用于按照从小到大获取节点
|
||
|
||
while priority_queue:
|
||
current_distance, current_node = heapq.heappop(priority_queue) # 优先弹出距离最小的节点
|
||
|
||
if current_node == word2:
|
||
break
|
||
|
||
if current_distance > distances[current_node]:
|
||
continue
|
||
|
||
for neighbor, attributes in self.graph[current_node].items(): # 遍历所有邻居节点及属性
|
||
weight = attributes.get('weight', 1)
|
||
distance = current_distance + weight # 更新距离,当前距离加入权重
|
||
|
||
if distance < distances[neighbor]:
|
||
distances[neighbor] = distance
|
||
previous_nodes[neighbor] = current_node
|
||
heapq.heappush(priority_queue, (distance, neighbor))
|
||
|
||
path = []
|
||
current_node = word2
|
||
while prev := previous_nodes[current_node]: # 从目标节点回溯直到起始节点
|
||
|
||
path.insert(0, current_node)
|
||
current_node = prev
|
||
if path:
|
||
path.insert(0, current_node)
|
||
|
||
if isinf(distances[word2]): # 目标节点不可达
|
||
return 0
|
||
return path.__len__()
|
||
# return (' '.join(path),path.__len__())
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|